CHAPTER IX – Pro Levitate

PART II: Goetheanism – Whence and Whither?

CHAPTER IX – Pro Levitate


In the preceding chapter we gained a new insight into the relationship between mass and force. We have come to see that our concept of force is grounded on empirical observation in no less a degree than is usually assumed for our concept of number, or size, or position, provided we do not confine ourselves to non-stereoscopic, colourless vision for the forming of our scientific world-picture, but allow other senses to contribute to it. As to the concept mass, our discussion of the formula F=ma showed that force and mass, as they occur in it, are of identical nature, both having the quality of force. The factors F and m signify force in a different relationship to space (represented by the factor a). This latter fact now requires some further elucidation.

In a science based on the Goethean method of contemplating the world of the senses, concepts such as ‘mass in rest’ and ‘mass in motion’ lack any scientific meaning (though for another reason than in the theory of Relativity). For in a science of this kind the universe – in the sense propounded lately by Professor Whitehead and others – appears as one integrated whole, whose parts must never be considered as independent entities unrelated to the whole. Seen thus, there is no mass in the universe of which one could say with truth that it is ever in a state of rest. Nor is there any condition of movement which could be rightly characterized by the attributes ‘uniform’ and ‘straight line’ in the sense of Newton’s first law. This does not mean that such conditions never occur in our field of observation. But as such they have significance only in relation to our immediate surroundings as a system of reference. Even within such limits these conditions are not of a kind that would allow us to consider them as the basis of a scientific world-picture. For as such they occur naturally only as ultimate, never as primeval conditions. All masses are originally in a state of curvilinear movement whose rates change continuously. To picture a mass as being in a state of rest, or of uniform motion in a straight line, as the result of no force acting on it, and to picture it undergoing a change in the rate and direction of its motion as the result of some outer force working on it, is a sheer abstraction. In so far as mass appears in our field of observation as being in relative rest or motion of the kind described, this is always the effect of some secondary dynamic cause.

If we wish to think with the course of the universe and not against it, we must not start our considerations with the state of (relative) rest or uniform motion in a straight line and derive our definition of force from the assumption that there is a primary ‘force-free’ state which is altered under the action of some force, but we must arrange our definitions in such a way that they end up with this state. Thus Newton’s first law, for instance, would have to be restated somewhat as follows: No physical body is ever in a state of rest or uniform motion in a straight line, unless its natural condition is interfered with by the particular action of some force.

Seen dynamically, and from the aspect of the universe as an interrelated whole, all aggregations of mass are the manifestation of certain dynamic conditions within the universe, and what appears to us as a change of the state of motion of such a mass is nothing but a change in the dynamic relationship between this particular aggregation and the rest of the world. Let us now see what causes of such a change occur within the field of our observation.

In modern textbooks the nature of the cause of physical movement is usually defined as follows: ‘Any change in the state of movement of a portion of matter is the result of the action on it of another portion of matter.’ This represents a truth if it is taken to describe a certain kind of causation. In the axiomatic form in which it is given it is a fallacy. The kind of causation it describes is, indeed, the only one which has been taken into consideration by the scientific mind of man. We are wont to call it ‘mechanical’ causation. Obviously, man’s onlooker-consciousness is unable to conceive of any other kind of causation. For this consciousness is by its very nature confined to the contemplation of spatially apparent entities which for this reason can be considered only as existing spatially side by side. For the one-eyed, colour-blind spectator, therefore, any change in the state of movement of a spatially confined entity could be attributed only to the action of another such entity outside itself. Such a world-outlook was bound to be a mechanistic one.

We cannot rest content with this state of affairs if we are sincerely searching for an understanding of how spirit moves, forms, and transforms matter. We must learn to admit non-mechanical causes of physical effects, where such causes actually present themselves to our observation. In this respect our own body is again a particularly instructive object of study. For here mechanical and non-mechanical causation can be seen working side by side in closest conjunction. Let us therefore ask what happens when we move, say, one of our limbs or a part of it.

The movement of any part of our body is always effected in some way by the movement of the corresponding part of the skeleton. This in turn is set in motion by certain lengthenings and contractions of the appropriate part of the muscular system. Now the way in which the muscles cause the bones to move falls clearly under the category of mechanical causation. Certain portions of matter are caused to move by the movement of adjacent portions of matter. The picture changes when we look for the cause to which the muscles owe their movements. For the motion of the muscles is not the effect of any cause external to them, but is effected by the purely spiritual energy of our volition working directly into the physical substance of the muscles. What scientific measuring instruments have been able to register in the form of physical, chemical, electrical, etc., changes of the muscular substance is itself an effect of this interaction.

To mark the fact that this type of causation is clearly distinguished from the type called mechanical, it will be well to give it a name of its own. If we look for a suitable term, the word ‘magical’ suggests itself. The fact that this word has gathered all sorts of doubtful associations must not hinder us from adopting it into the terminology of a science which aspires to understand the working of the supersensible in the world of the senses. The falling into disrepute of this word is characteristic of the onlooker-age. The way in which we suggest it should be used is in accord with its true and original meaning, the syllable ‘mag’ signifying power or might (Sanskrit maha, Greek megas, Latin magnus, English might, much, also master). Henceforth we shall distinguish between ‘mechanical’ and ‘magical’ causation, the latter being a characteristic of the majority of happenings in the human, animal and plant organisms.1

Our next step in building up a truly dynamic picture of matter must be to try to obtain a direct experience of the condition of matter when it is under the sway of magical causation.

Let us first remember what is the outstanding attribute with which matter responds to mechanical causation. This is known to be inertia. By this term we designate the tendency of physical matter to resist any outwardly impressed change of its existing state of movement. This property is closely linked up with another one, weight. The coincidence of the two has of late become a puzzle to science, and it was Albert Einstein who tried to solve it by establishing his General Theory of Relativity. The need to seek such solutions falls away in a science which extends scientific understanding to conditions of matter in which weight and inertia are no longer dominant characteristics. What becomes of inertia when matter is subject to magical causation can be brought to our immediate experience in the following way. (The reader, even if he is already familiar with this experiment, is again asked to carry it out for himself.)

Take a position close to a smooth wall, so that one arm and hand, which are left hanging down alongside the body, are pressed over their entire length between body and wall. Try now to move the arm upward, pressing it against the wall as if you wanted to shift the latter. Apply all possible effort to this attempt, and maintain the effort for about one minute. Then step away quickly from the wall by more than the length of the arm, while keeping the arm hanging down by the side of the body in a state of complete relaxation. Provided all conditions are properly fulfilled, the arm will be found rising by itself in accordance with the aim of the earlier effort, until it reaches the horizontal. If the arm is then lowered again and left to itself, it will at once rise again, though not quite so high as before. This can be repeated several times until the last vestige of the automatic movement has faded away.

Having thus ascertained by direct experience that there is a state of matter in which inertia is, to say the least, greatly diminished, we find ourselves in need of giving this state (which is present throughout nature wherever material changes are brought into existence magically) a name of its own, as we did with the two types of causation. A word suggests itself which, apart from expressing adequately the peculiar self-mobility which we have just brought to our experience, goes well alongside the word ‘inert’ by forming a kind of rhyme with it. This is the term ‘alert’. With its help we shall henceforth distinguish between matter in the inert and alert conditions. We shall call the latter state ‘alertness’, and in order to have on the other side a word as similar as possible in outer form to alertness, we suggest replacing the usual term inertia by ‘inertness’. Thus we shall speak of matter as showing the attribute of ‘inertness’, when it is subject to mechanical causation, of ‘alertness’, when it is subject to magical causation.

Anyone who watches attentively the sensation produced by the rising arm in the above experiment will be duly impressed by the experience of the alertness prevailing in the arm as a result of the will’s magical intervention.

In our endeavour to find a modern way of overcoming the conception of matter developed and held by science in the age of the onlooker-consciousness, we shall be helped by noticing how this conception first arose historically. Of momentous significance in this respect is the discovery of the gaseous state of matter by the Flemish physician and experimenter, Joh. Baptist van Helmont (1577-1644). The fact that the existence of this state of ponderable matter was quite unknown up to such a relatively recent date has been completely forgotten to-day. Moreover, it is so remote from current notions that anyone who now calls attention to van Helmont’s discovery is quite likely to be met with incredulity. As a result, there is no account of the event that puts it in its true setting. In what follows pains are taken to present the facts in the form in which one comes to know them through van Helmont’s own account, given in his Ortus Medicinae.

For reasons which need not be described here, van Helmont studied with particular interest the various modifications in which carbon is capable of occurring in nature – among them carbon’s combustion product, carbon dioxide. It was his observations of carbon dioxide which made him aware of a condition of matter whose properties caused him the greatest surprise. For he found it to be, at the same time, ‘much finer than vapour and much denser than air’. It appeared to him as a complete ‘paradox’, because it seemed to unite in itself two contradictory qualities, one appertaining to the realm of ‘uncreated things’, the other to the realm of ‘created things’. Unable to rank it with either ‘vapour’ or ‘air’ (we shall see presently what these terms meant in van Helmont’s terminology), he found himself in need of a special word to distinguish this new state from the other known states, both below and above it. Since he could not expect any existing language to possess a suitable word, he felt he must create one. He therefore took, and changed slightly, a word signifying a particular cosmic condition which seemed to be imaged in the new condition he had just discovered. The word was CHAOS. By shortening it a little, he derived from it the new word GAS. His own words explaining his choice are: ‘Halitum ilium GAS vocavi non longe a Chaos veterum secretum.’ (‘I have called this mist Gas, owing to its resemblance to the Chaos of the ancients.’)2

Van Helmont’s account brings us face to face with a number of riddles. Certainly, there is nothing strange to us in his describing carbon dioxide gas as being ‘finer than vapour and denser than air’; but why did he call this a ‘paradox’? What prevented him from ranking it side by side with air? As to air itself, why should he describe it as belonging to the realm of the ‘uncreated things’? What reason was there for giving ‘vapour’ the rank of a particular condition of matter? And last but not least, what was the ancient conception of Chaos which led van Helmont to choose this name as an archetype for the new word he needed?

To appreciate van Helmont’s astonishment and his further procedure, we must first call to mind the meaning which, in accordance with the prevailing tradition, he attached to the term Air. For van Helmont, Air was one of the four ‘Elements’, EARTH, WATER, AIR, and FIRE. Of these, the first two were held to constitute the realm of the ‘created things’, the other two that of the ‘uncreated things’. A brief study of the old doctrine of the Four Elements is necessary at this point in order to understand the meaning of these concepts.

The first systematic teaching about the four elementary constituents of nature, as they were experienced by man of old, was given by Empedocles in the fifth century B.C. It was elaborated by Aristotle. In this form it was handed down and served to guide natural observation through more than a thousand years up to the time of van Helmont. From our earlier descriptions of the changes in man’s consciousness it is clear that the four terms, ‘earth’, ‘water’, ‘air’, ‘fire’, must have meant something different in former times. So ‘water’ did not signify merely the physical substance which modern chemistry defines by the formula H2O; nor was ‘air’ the mixture of gases characteristic of the earth’s atmosphere. Man in those days, on account of his particular relationship with nature, was impressed in the first place by the various dynamic conditions, four in number, which he found prevailing both in his natural surroundings and in his own organism. With his elementary concepts he tried to express, therefore, the four basic conditions which he thus experienced. He saw physical substances as being carried up and down between these conditions.

At first sight some relationship seems to exist between the concept ‘element’ in this older sense and the modern view of the different states of material aggregation, solid, liquid, aeriform. There is, however, nothing in this modern view that would correspond to the element Fire. For heat in the sense of physical science is an immaterial energy which creates certain conditions in the three material states, but from these three to heat there is no transition corresponding to the transitions between themselves. Heat, therefore, does not rank as a fourth condition by the side of the solid, liquid and aeriform states, in the way that Fire ranks in the older conception by the side of Earth, Water and Air.

If we were to use the old terms for designating the three states of aggregation plus heat, as we know them to-day, we should say that there is a border-line dividing Fire from the three lower elements. Such a border-line existed in the older conception of the elements as well. Only its position was seen to be elsewhere – between Earth and Water on the one hand, Air and Fire on the other. This was expressed by saying that the elements below this line constituted the realm of the ‘created things’, those above it that of the ‘uncreated things’. Another way of expressing this was by characterizing Earth and Water with the quality Cold; Air and Fire with the quality Warm. The two pairs of elements were thus seen as polar opposites of one another.

The terms ‘cold’ and ‘warm’ must also be understood to have expressed certain qualitative experiences in which there was no distinction as yet between what is purely physical and what is purely spiritual. Expressions such as ‘a cold heart’, ‘a warm heart’, to ‘show someone the cold shoulder’, etc., still witness to this way of experiencing the two polar qualities, cold and warm. Quite generally we can say that, wherever man experienced some process of contraction, whether physical or non-physical, he designated it by the term ‘cold’, and where he experienced expansion, he called it ‘warm’. In this sense he felt contractedness to be the predominant characteristic of Earth and Water, expansiveness that of Air and Fire.

With the help of these qualitative concepts we are now in a position to determine more clearly still the difference between the older and the modern conceptions: in particular the difference between the aeriform condition of matter, as we conceive of it to-day, and the element Air. Contractedness manifests as material density, or the specific weight of a particular substance. We know that this characteristic of matter diminishes gradually with its transition from the solid to the liquid and aeriform states. We know also that this last state is characterized by a high degree of expansiveness, which is also the outstanding property of heat. Thus there is reason to describe also from the modern point of view the solid and liquid states as essentially ‘cold’, and the aeriform state as ‘warm’. But aeriform matter still has density and weight, and this means that matter in this state combines the two opposing qualities. Contrary to this, Air, as the second highest element in the old sense, is characterized by the pure quality, warm. Thus, when man of old spoke of ‘air’, he had in mind something entirely free from material density and weight.3

By comparing in this way the older and newer conceptions of ‘air’, we come to realize that ancient man must have had a conception of gravity essentially different from ours. If we take gravity in the modern scientist’s sense, as a ‘descriptive law of behaviour’, then this behaviour is designated in the older doctrine by the quality ‘cold’. If, however, we look within the system of modern science for a law of behaviour that would correspond to the quality ‘warm’, we do so in vain. Polarity concepts are certainly not foreign to the scientific mind, as the physics of electricity and magnetism show. Yet there is no opposite pole to gravity, as there is negative opposite to positive electricity, etc.4

In the older conception, however, the gravitational behaviour ‘cold’ was seen to be counteracted by an autonomous anti-gravitational behaviour ‘warm’. Experience still supported the conviction that as a polar opposite to the world subject to gravity, there was another world subject to levity.

We refrain at this point from discussing how far a science which aspires to a spiritual understanding of nature, including material processes, needs a revival – in modern form – of the old conception of levity. In our present context it suffices to realize that we understand man’s earlier view of nature, and with it the one still held by van Helmont, only by admitting levity equally with gravity into his world-picture. For the four elements, in particular, this meant that the two upper ones were regarded as representing Levity, the two lower ones Gravity.

In close connexion with this polar conception of the two pairs of elements, there stands their differentiation into one realm of created, another of uncreated, things. To understand what these terms imply, we must turn to the ancient concept, Chaos, borrowed by van Helmont.

To-day we take the word Chaos to mean a condition of mere absence of order, mostly resulting from a destruction of existing forms, whether by nature or by the action of man. In its original sense the word meant the exact opposite. When in ancient times people spoke of Chaos, they meant the womb of all being, the exalted realm of uncreated things, where indeed forms such as are evident to the eye in the created world are not to be found, but in place of them are the archetypes of all visible forms, as though nurtured in a spiritual seed-condition. It is the state which in the biblical narration of the creation of the world is described as ‘without form and void’.

From this Chaos all the four elements are born, one by one, with the two upper ones retaining Chaos’s essential characteristic in that they are ‘without form’ and tend to be omnipresent, whilst the two lower ones constitute a realm in which things appear in more or less clearly outlined space-bound forms. This is what the terms ‘uncreated’ and ‘created’ imply.

How strictly these two realms were distinguished can be seen by the occurrence of the concept ‘vapour’. When with the increasing interest in the realm of created things – characteristic of the spectator-consciousness which, in view of our earlier description of it, we recognize as being itself a ‘created thing’ – the need arose for progressive differentiation within this realm, the simple division of it into ‘earth’ and ‘water’ was no longer felt to be satisfactory. After all, above the liquid state of matter there was another state, less dense than water and yet presenting itself through more or less clearly distinguishable space-bound objects, such as the mists arising from and spreading over ponds and meadows, and the clouds hovering in the sky. For this state of matter the term ‘vapour’ had become customary, and it was used by van Helmont in this sense. By its very properties, Vapour belonged to the realm of the created things, whereas Air did not. It was the intermediary position of the newly discovered state of matter between Vapour and Air, that is, between the created and the uncreated world, which caused van Helmont to call it a paradox; and it was its strange resemblance, despite its ponderable nature, to Chaos, which prompted him to name it – Gas.

Since it could not have been the gaseous state of matter in the form discovered by van Helmont, what particular condition of nature was it to which the ancients pointed when using the term Air? Let us see how the scriptures of past human cultures speak of air.

In all older languages, the words used to designate the element bound up with breathing, or the act of breathing, served at the same time to express the relationship of man to the Divine, or even the Divine itself. One need think only of the words Brahma and Atma of the ancient Indians, the Pneuma of the Greeks, the Spiritus of the Romans. The Hebrews expressed the same idea when they said that Jehovah had breathed the breath of life into man and that man in this way became a living soul.

What lies behind all these words is the feeling familiar to man in those times, that breathing was not only a means of keeping the body alive, but that a spiritual essence streamed in with the breath. So long as this condition prevailed, people could expect that by changing their manner of breathing they had a means of bringing the soul into stronger relationship with spiritual Powers, as is attempted in Eastern Yoga.

Remembering the picture of man’s spiritual-physical evolution which we have gained from earlier chapters, we are not astonished to find how different this early experience of the breathing process was from our own. Yet, together with the recognition of this difference there arises another question. Even if we admit that man of old was so organized that the experience of his own breathing process was an overwhelmingly spiritual one, it was, after all, the gaseous substance of the earth’s atmosphere which he inhaled, and exhaled again in a transformed condition. What then was it that prevented men – apparently right up to the time of van Helmont – from gaining the slightest inkling of the materiality of this substance? To find an answer to this question, let us resort once more to our method of observing things genetically, combined with the principle of not considering parts without considering the whole to which they organically belong.

In modern science the earth is regarded as a mineral body whereon the manifold forms of nature appear as mere additions, arising more or less by chance; one can very well imagine them absent without this having any essential influence on the earth’s status in the universe. The truth is quite different. For the earth, with everything that exists on it, forms a single whole, just as each separate organism is in its own way a whole.

This shows that we have no right to imagine the earth without men, and to suppose that its cosmic conditions of being would then remain unaltered – any more than we can imagine a human being deprived of some essential-organ and remaining human. Mankind, and all the other kingdoms of nature, are bound up organically with the earth from the start of its existence. Moreover, just as the highest plants, seen with Goethe’s eyes, are the spiritual originators of the whole realm of plants – the creative Idea determining their evolution – so we see man, the highest product of earth evolution, standing behind this evolution as its Idea from the first, and determining its course. The evolutionary changes which we observe in the earth and in man are in fact a single process, working through a variety of manifested forms.

From this conception of the parallel evolution of earth and man light falls also on the historic event represented by van Helmont’s discovery. Besides being a symptom of a revolution in man’s way of experiencing the atmosphere, it speaks to us of some corresponding change in the spiritual-physical condition of the atmosphere itself. It was then that men not only came to think differently about air, but inhaled and exhaled an air that actually was different. To find out what kind of change this was, let us turn once more to man’s own organism and see what it has to say concerning the condition under which matter is capable of being influenced by mechanical and magical causation respectively, in the sense already described.

What is it in the nature of the bones that makes them accessible to mechanical causation only, and what is it in the muscles that allows our will to rouse them magically? Bones and muscles stand in a definite genetic relationship to each other, the bones being, in relation to the muscles, a late product of organic development. This holds good equally for everything which in the body of living nature takes the form of mineralized deposits or coverings. Every kind of organism consists in its early stages entirely of living substance; in the course of time a part of the organism separates off” and passes over into a more or less mineralized condition. Seen in this light, the distinction between bones and muscles is that the bones have evolved out of a condition in which the muscles persist, though to a gradually waning degree, throughout the life-time of the body. The substance of the muscles, remaining more or less ‘young’, stands at the opposite pole from the ‘aged’ substance of the bones. Hence it depends on the ‘age’ of a piece of matter whether it responds to magical or mechanical causation.

Let us state here at once, that this temporal distinction has an essential bearing on our understanding of evolutionary processes in general. For if mineral matter is a late product of evolution – and nothing in nature indicates the contrary – then to explain the origins of the world (as scientific theories have always done) with the aid of events similar in character to those which now occur in the mineral realm, means explaining them against nature’s own evidence. To find pictures of past conditions of the earth in present-day nature, we must look in the regions where matter, because it is still ‘youthful’, is played through by the magical working of purposefully active spiritual forces. Thus, instead of seeing in them the chance results of blind volcanic and similar forces, we must recognize in the formation and layout of land and sea an outcome of events more closely resembling those which occur during the embryonic development of a living organism.

What, then, does van Helmont’s discovery of the gaseous state of matter tell us, if we regard it in the light of our newly acquired insight into the trend of evolution both within and without man? When, in the course of its growing older, mankind had reached the stage which is expressed by the emergence of the spectator-consciousness-consciousness, that is, based on a nervous system which has grown more or less independent of the life forces of the organism – the outer elements had, in their way, arrived at such a state that man began to inhale an air whose spiritual-physical constitution corresponded exactly to that of his nervous system: on either side, Spirit and Matter, in accordance with the necessities of cosmic evolution had lost their primeval union.

Our extension of the concept of evolution to the very elements of nature, whether these are of material or non-material kind, and our recognition of this evolution as leading in general from a more alert to a more inert condition, at once open the possibility of including in our scientific world-picture certain facts which have hitherto resisted any inclusion. We mean those manifold events of ‘miraculous’ nature, of which the scriptures and the oral traditions of old are full. What is modern man to make of them?

The doubts which have arisen concerning events of this kind have their roots on the one hand in the apparent absence of such occurrences in our day, on the other in the fact that the laws of nature derived by science from the present condition of the world seem to rule them out.5 In the light of the concept of the world’s ‘ageing’ which we have tried to develop here, not only do the relevant reports become plausible, but it also becomes understandable why, if such events have taken place in the past, they fail to do so in our own time.

To illustrate this, let us take a few instances which are symptomatic of the higher degree of youthfulness which was characteristic in former times in particular of the element of Fire.

The role which Fire was capable of playing in man’s life at a time when even this element, in itself the most youthful of all, was more susceptible to magic interference than of late, is shown by the manifold fire-rites of old. In those days, when no easy means of fire-lighting were available, it was usual for the needs of daily life to keen a fire burning all the time and to kindle other fires from it. Only in cases of necessity was a new fire lit, and then the only way was by the tedious rubbing together of two pieces of dry wood.

Then both the maintenance of fires, and the deliberate kindling of a new fire, played quite a special role in the ceremonial ordering of human society. Historically, much the best known is the Roman usage in the Temple of Vesta. On the one hand, the unintentional extinction of the fire was regarded as a national calamity and as the gravest possible transgression on the part of the consecrated priestess charged with maintaining the fire. On the other hand, it was thought essential for this ‘everlasting’ fire to be newly kindled once a year. This took place with a special ritual at the beginning of the Roman year (1st March).

The conception behind such a ritual of fire-kindling will become clear if we compare with it certain other fire-rites which were practised in the northern parts of Europe, especially in the British Isles, until far on in the Christian era. For example, if sickness broke out among the cattle, a widespread practice was to extinguish all the hearth-fires in the district and then to kindle with certain rites a new fire, from which all the local people lit their own fires once more. Heavy penalties were prescribed for anyone who failed to extinguish his own fire – a failure usually indicated by the non-manifestation of the expected healing influence. In Anglo-Saxon speaking countries, fires of this kind were known as ‘needfires’.

The spiritual significance of these fires cannot be expressed better than by the meaning of the very term ‘needfire’. This word does not derive, as was formerly believed, from the word ‘need’, meaning a ‘fire kindled in a state of need’, but, as recent etymological research has shown, from a root which appears in the German word nieten – to clinch or rivet. ‘Needfire’ therefore means nothing less than a fire which was kindled for ‘clinching’ anew the bond between earthly life and the primal spiritual order at times when for one reason or another there was a call for this.

This explanation of the ‘needfire’ throws light also on the Roman custom of re-kindling annually the sacred fire in the Temple of Vesta. For the Romans this was a means of reaffirming year by year the connexion of the nation with its spiritual leadership; accordingly, they chose the time when the sun in its yearly course restores – ‘re-clinches’ – the union of the world-spirit with earthly nature, for the rebirth of the fire which throughout the rest of the year was carefully guarded against extinction.

Just as men saw in this fire-kindling a way of bringing humanity into active relation with spiritual powers, so on the other hand were these powers held to use the fire element in outer nature for the purpose of making themselves actively known to mankind. Hence we find in the records of all ancient peoples a unanimous recognition of lightning and thunder on the one hand, and volcanic phenomena on the other, as means to which the Deity resorts for intervening in human destiny. A well-known example is the account in the Bible of the meeting of Moses with God on Mount Sinai. As occurrence in the early history of the Hebrews it gives evidence that even in historical times the fire element of the earth was sufficiently ‘young’ to serve the higher spiritual powers as an instrument for the direct expression of their will.


We said earlier in this chapter that a science which aspires to a spiritual understanding of the physical happenings in nature must give up the idea that inertness and weight are absolute properties of matter. We were able at once to tackle the question of inertness by bringing to our immediate observation matter in the state of diminished inertness, or, as we proposed to say, of alertness. We are now in a position to go into the other question, that of weight or gravity. Just as we found inertness to have its counterpart in alertness, both being existing conditions of matter, so we shall now find in addition to the force of gravity another force which is the exact opposite of it, and to which therefore we can give no better name than ‘levity’.

Already, indeed, the picture of nature which we gained from following Goethe’s studies both of the plant and of meteorological happenings has brought us face to face with certain aspects of levity. For when Goethe speaks of systole and diastole, as the plant first taught him to see them and as later he found them forming the basic factors of weather-formation, he is really speaking of the ancient concepts, ‘cold’ and ‘warm’. Goethe’s way of observing nature is, in fact, a first step beyond the limits of a science which kept itself ignorant of levity as a cosmic counterpart to terrestrial gravity. To recognize the historical significance of this step, let us turn our glance to the moment when the human mind became aware that to lay a proper foundation for the science it was about to build, it had to exclude any idea of levity as something with a real existence.

Many a conception which is taken for granted by modern man, and is therefore assumed to have been always obvious, was in fact established quite deliberately at a definite historical moment. We have seen how this applies to our knowledge of the gaseous state of matter; it applies also to the idea of the uniqueness of gravity. About half a century after van Helmont’s discovery a treatise called Contra Levitatem was published in Florence by the Accademia del Cimento. It declares that a science firmly based on observation has no right to speak of Levity as something claiming equal rank with, and opposite to, Gravity.

This attitude was in accord with the state into which human consciousness had entered at that time. For a consciousness which is itself of the quality ‘cold’, because it is based on the contracting forces of the body, is naturally not in a position to take into consideration its very opposite. Therefore, to speak of a force of levity as one felt able to speak of gravity was indeed without meaning.

Just as there was historical necessity in this banishing of levity from science at the beginning of the age of the spectator-consciousness, so was there historical necessity in a renewed awareness of it arising when the time came for man to overcome the limitations of his spectator – relationship to the world. We find this in Goethe’s impulse to search for the action of polarities in nature. As we shall see later, it comes to its clearest expression in Goethe’s optical conceptions.

Another witness to this fact is Ruskin, through a remark which bears in more than one sense on our present subject. It occurs in his essay, The Storm-Cloud of the Ninteenth Century. In its context it is meant to warn the reader against treating science, which Ruskin praises as a fact-finding instrument, as an interpreter of natural facts. Ruskin takes Newton’s conception of gravity as the all-moving cause of the universe, and turns against it in the following words:

‘Take the very top and centre of scientific interpretation by the greatest of its masters: Newton explained to you – or at least was once supposed to explain, why an apple fell; but he never thought of explaining the exact correlative but infinitely more difficult question, how the apple got up there.’

This remark shows Ruskin once again as a true reader in nature’s book. Looking with childlike openness and intensity of participation into the world of the senses, he allows nature’s phenomena to impress themselves upon his mind without giving any preconceived preference to one kind or another. This enables him not to be led by the phenomenon of falling bodies to overlook the polarically opposite phenomenon of the upward movement of physical matter in the living plant. Ruskin’s remark points directly to the new world-conception which must be striven for to-day – the conception in which death is recognized as a secondary form of existence preceded by life; in which levity is given its rightful place as a force polar to gravity; and in which, because life is bound up with levity as death is with gravity, levity is recognized as being of more ancient rank than gravity.

In proceeding now to a study of levity we shall not start, as might be expected, with plants or other living forms. We are not yet equipped to understand the part played by levity in bringing about the processes of life; we shall come to this later. For our present purpose we shall look at certain macrotelluric events – events in which large areas of the earth are engaged – taking our examples from meteorology on the one hand and from seismic (volcanic) processes on the other.

In pursuing this course we follow a method which belongs to the fundamentals of a Goetheanistic science. A few words about this method may not be out of place.

When we strive to read the book of nature as a script of the spirit we find ourselves drawn repeatedly towards two realms of natural phenomena. They are widely different in character, but studied together they render legible much that refuses to be deciphered in either realm alone. These realms are, on the one hand, the inner being of man, and, on the other, the phenomena of macrotelluric and cosmic character. The fruitfulness of linking together these two will become clear if we reflect on the following.

The field of the inner life of man allows us, as nothing else does, to penetrate it with our own intuitive experience. For we ourselves are always in some sense the cause of the events that take place there. In order to make observations in this region, however, we need to bring about a certain awakening in a part of our being which – so long as we rely on the purely natural forces of our body – remains sunk in more or less profound unconsciousness.

If this realm of events is more intimately related than any other to our intuitive experience, it has also the characteristic of remaining closed to any research by external means. Much of what lies beyond the scope of external observation, however, reveals itself all the more clearly in the realms where nature is active on the widest scale. Certainly, we must school ourselves to read aright the phenomena which come to light in those realms. And once more we must look to the way of introspection, previously mentioned, for aid in investing our gaze with the necessary intuitive force. If we succeed in this, then the heavens will become for us a text wherein secrets of human nature, hidden from mere introspection, can be read; while at the same time the introspective way enables us to experience things which we cannot uncover simply by observing the outer universe.

Apart from these methodological considerations, there is a further reason for our choice. Among the instances mentioned earlier in this chapter as symptoms of a greater ‘youthfulness’ prevailing in nature, and particularly in the element Fire, at a comparatively recent date, were the manifestations of the Divine-Spiritual World to man reported in the Bible as the event on Mount Sinai. There, thunder and lightning from above and volcanic action from below form the setting for the intercourse of Jehovah with Moses. To-day the function of these types of phenomena, though metamorphosed by the altered conditions of the earth, is not essentially different. Here, more than in any other sphere of her activities, nature manifests that side of her which we are seeking to penetrate with understanding.

Let us start with an observation known to the present writer from a visit to the Solfatara, a volcanic region near Naples.

The Solfatara itself is a trough surrounded by hilly mounds; its smooth, saucepan-like bottom, covered with whitish pumice-sand, is pitted with craters containing violently boiling and fuming mud – the so-called fango, famous for its healing properties. All around sulphurous fumes issue from crevices in the rocks, and in one special place the Solfatara reveals its subterranean activity by the emergence of fine, many-coloured sand, which oozes up like boiling liquid from the depths below. The whole region gives the impression of being in a state of labile balance. How true this is becomes apparent if one drops pieces of burning paper here and there on the ground: immediately a cloud of smoke and steam rises. The effect is even more intense if a burning torch is moved about over one of the boiling fango holes. Then the deep answers instantly with an extraordinary intensification of the boiling process. The hot mud seems to be thrown into violent turmoil, emitting thick clouds of steam, which soon entirely envelop the spectator near the edge.

The scientific mind is at first inclined to see in this phenomenon the mechanical effect of reduced air-pressure, due to the higher temperatures above the surface of the boiling mud, though doubts are raised by the unusual intensity of the reaction. The feeling that the physical explanation is inadequate is strengthened when the vapours have thinned out and one is surprised to see that every crack and cranny in the Solfatara, right up to the top of the trough, shows signs of increased activity. Certainly, this cannot be accounted for by a cause-and-effect nexus of the kind found in the realm of mechanical causation, where an effect is propagated from point to point and the total effect is the sum of a number of partial effects. It looks rather as if the impulse applied in one spot had called for a major impulse which was now acting on the Solfatara as a whole.

As observers who are trying to understand natural phenomena by recognizing their significance as letters in nature’s script, we must look now for other phenomena which can be joined with this one to form the relevant ‘word’ we have set out to decipher.

All scientific theories concerning the causes of seismic occurrences, both volcanic and tectonic, have been conceived as if the spatial motion of mineral matter were the only happening that had to be accounted for. No wonder that none of these theories has proved really satisfactory even to mechanistically orientated thinking. Actually there are phenomena of a quite different kind connected with the earth’s seismic activities, and these need to be taken into equal account.

There is, for instance, the fact that animals often show a premonition of volcanic or tectonic disturbances. They become restive and hide, or, if domestic, seek the protection of man. Apparently, they react in this way to changes in nature which precede the mechanical events by which man registers the seismic occurrence.

Another such phenomenon is the so-called earthquake-sky, which the present writer has had several occasions to witness. It consists of a peculiar, almost terrifying, intense discoloration of the sky, and, to those acquainted with it, is a sure sign of an imminent or actual earthquake somewhere in the corresponding region of the earth. This phenomenon teaches us that the change in the earth’s condition which results in a violent movement of her crust, involves a region of her organism far greater than the subterranean layers where the cause of the purely mechanical events is usually believed to reside.6

That man himself is not excluded from experiencing directly the super-spatial nature of seismic disturbances is shown by an event in Goethe’s life, reported by his secretary Eckermann, who himself learnt the story from an old man who had been Goethe’s valet at the time.7

This is what the old man, whom Eckermann met by accident one day near Weimar, told him: ‘Once Goethe rang in the middle of the night and when I entered his room I found he had rolled his iron bed to the window and was lying there, gazing at the heavens. “Have you seen nothing in the sky?” asked he, and when I answered “No”, he begged me to run across to the sentry and inquire of the man on duty if he had seen nothing. He had not noticed anything and when I returned I found the master still in the same position, gazing at the sky. “Listen,” he said, “this is an important moment; there is now an earthquake or one is just going to take place.” Then he made me sit down on the bed and showed me by what signs he knew this.’ When asked about the weather conditions, the old man said: ‘It was very cloudy, very still and sultry.’ To believe implicitly in Goethe was for him a matter of course, ‘for things always happened as he said they would’. When next day Goethe related his observations at Court, the women tittered: ‘Goethe dreams’ (‘Goethe schwärmt‘), but the Duke and the other men present believed him. A few weeks later the news reached Weimar that on that night (5th April, 1783) part of Messina had been destroyed by an earthquake.

There is no record by Goethe himself of the nature of the phenomenon perceived by him during that night, except for a brief remark in a letter to Mme de Stein, written the following day, in which he claims to have seen a ‘northern light in the south-east’ the extraordinary character of which made him fear that an earthquake had taken place somewhere. The valet’s report makes us inclined to think that there had been no outwardly perceptible phenomenon at all, but that what Goethe believed he was seeing with his bodily eyes was the projection of a purely supersensible, but not for that reason any less objective, experience.

In a picture of the seismic activities of the earth which is to comprise phenomena of this kind, the volcanic or tectonic effects cannot be attributed to purely local causes. For why, then, should the whole meteorological sphere be involved, and why should living beings react in the way described? Clearly, we must look for the origin of the total disturbance not in the interior of the earth but in the expanse of surrounding space. Indeed, the very phenomenon of the Solfatara, if seen in this light, can reveal to us that at least the volcanic movements of the earth’s crust are not caused by pressure from within, but by suction from without – that is, by an exceptional action of levity.

We recall the fact that the whole Solfatara phenomenon had its origin in a flame being swayed over one of the fango holes. Although it remains true that the suction arising from the diminished air pressure over the hole cannot account for the intense increase of ebullition in the hole itself, not to speak of the participation of the entire region in this increase, there is the fact that the whole event starts with a suctional effect. As we shall see in the next chapter, any local production of heat interferes with the gravity conditions at that spot by shifting the balance to the side of levity. That the response in a place like the Solfatara is what we have seen it to be, is the result of an extraordinary lability of the equilibrium between gravity and levity, a characteristic appertaining to the earth’s volcanism in general.

For the people living near the Solfatara it is indeed common knowledge that there are times when this lability is so great that the slightest local disturbance of the kind we have described can provoke destructive eruptions of great masses of subterranean mud. (At such times access to the Solfatara is prohibited.) We shall understand such an eruption rightly if we picture it as the counter-pole of an avalanche. The latter may be brought about by a fragment of matter on a snow-covered mountain, perhaps a little stone, breaking loose and in its descent bringing ever-accumulating masses of snow down with it. The levity-process polar to this demonstration of gravity is the production of a mightily growing ‘negative avalanche’ by comparatively weak local suction, caused by a small flame.

Earlier in this chapter (page 150) we said that if we want to understand how spirit moves, forms and transforms matter, we must recognize the existence of non-mechanical (magical) causes of physical effects. We have now found that the appearance of such effects in nature is due to the operations of a particular force, levity, polar to gravity. Observation of a number of natural happenings has helped us to become familiar in a preliminary way with the character of this force. Although these happenings were all physical in appearance, they showed certain definitely non-physical features, particularly through their peculiar relationship to three-dimensional space. More characteristics of this kind will appear in the following pages.

In this way it will become increasingly clear that in levity we have to do with something which, despite its manifesting characteristics of a ‘force’ not unlike gravity and thereby resembling the latter, differs essentially from anything purely physical. It is only by its interactions with gravity that levity brings about events in the physical world-events, however, which are themselves partly of a physical, partly of a superphysical kind. Seeing things in this aspect, we are naturally prompted to ask what causes there are in the world which make gravity and levity interact at all. This question will find its answer in due course. First, we must make ourselves more fully acquainted with the various appearances of the gravity-levity interplay in nature.

1 In this sense Ruskin’s description of the working of the spirit in the plant as one that ‘catches from chaos water, etc., etc., and fastens them into a given form’ points to magical action.

2 For Van Helmont, owing to the Flemish pronunciation of the letter G, the two words sounded more alike than their spelling suggests.

3 In a later chapter we shall have opportunity to determine what distinguishes Air from Fire, on the one hand, and Water from Earth on the other.

4 It is this apparent uni-polarity of gravity which has given Professor Einstein so much trouble in his endeavour to create a purely gravitational world-picture with bipolar electricity and magnetism fitting into it mathematically.

5 See the ‘Bishop Barnes’ controversy of recent date.

6 To the same category belong the mighty thunderstorms which in some parts of the world are known to occur in conjunction with earthquakes.

7 See Goethe’s Conversations with Eckermann (translated by J. Oxenford), 13th November, 1823.